5 people like it.
Like the snippet!
Distribution of Random hyperharmonic series
The random hyperharmonic series is the infinite series S = Sum(1,inf,d(i)/i^pow),
where integer pow is greater than 1, and d(i) are independent, identically distributed
random variables with property P(d(i)=0) = P(d(i)=1) = 0.5. Cumulative function F(x) = P(S < x) for even powers can be build by combination of analytical and numerical computations.
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
|
(*The random hyperharmonic series is the infinite series S = Sum(1,inf,d(i)/i^pow),
where integer pow > 1, and d(i) are independent, identically distributed
random variables with property P(d(i)=0) = P(d(i)=1) = 0.5. The fact that
for even pows the hyperharmonic series converge to some value at [0, ΞΆ(pow)] with prob 1.
To build cumulative function F(x) = P(S < x) the tail of a series replaced by an
appropriate normal random variable. Complexity ~ O(2^k), although faster calculations
are possible, the program shows connections between number theory and probability theory.
Expressions employed here are quite simple, therefore many improvements can be made easily*)
// some primitive actions
let inline square x = x * x
let inline double x = x + x
let inline half x = x*0.5
let inline inverse x = 1.0/x
let sign x = if x=0.0 then x else x/(abs x)
//Binomial coeffs
type binom =
static member fact n =
let rec loop acc = function
| n when n = 0 -> acc
| n -> loop (n*acc) (n-1)
loop 1 n
static member comb n m =
binom.fact n / (binom.fact m * binom.fact (n-m))
//Bernoulli numbers
let rec bernoulli = function
| n when n = 0 -> 1.0
| n when n = 1 -> -0.5
| n when n % 2 = 1 -> 0.0
| n -> -([0..(n-1)]
|> List.map (fun k ->
(binom.comb (n+1) k |> float, bernoulli k))
|> List.sumBy (fun x -> fst x * snd x)
) / (float (n+1))
//optional upper limit for a sum
type UpperLimit =
| Infinity
| Integer of int
//Hyperharmonic series of even power
type HypHarmonic(pow) =
let m = pow/2
let repl =
let rec loop f n =
if n = 1 then f
else loop (f>>f) (n/2)
loop square (pow/2)
member h.pow = pow
//terms
member h.a i = i |> repl |> inverse
static member (*) (a:HypHarmonic,b:HypHarmonic) = HypHarmonic(a.pow * b.pow)
static member pi2 = double System.Math.PI
static member sign n = let k = n % 2 in 1 - double k
//sum
member h.sum = function
| Infinity -> let s = HypHarmonic.sign (m+1) |> float in
let p = pown HypHarmonic.pi2 pow in
let f = binom.fact pow |> float in
s*p*(bernoulli pow) / f |> half
| Integer i -> [float i..(-1.0)..1.0] |> List.sumBy h.a
//remainder of a sum
member h.rest n = h.sum Infinity - h.sum n
//calculate exact distribution for first "apr" terms
//and approximate distribution for the remainder
let distribApprox pow apr x =
let k = (float (pown 2.0 apr)) in
let n = Integer apr in //number of terms to sum
let h = HypHarmonic pow in //series of even power pow S(n) = 1/1^pow + 1/2^pow + .. +1/n^pow
let M (h:HypHarmonic) = h.rest n |> half //remainder of the h's series. It's expectation Eh
let m = M h
let s = M (square h) |> half |> sqrt //remainder of the h's series. It's stdev sqrt(Vh)
//Normal distribution
let rec erfc x =
if x < 0.0 then 2.0 - erfc (-x)
elif x<0.5 then 1.0 - erf x
elif x>=10.0 then 0.0
else
let P =x*(x*(x*(x*(x*(x*(x*(0.5641877825507397413087057563)
+ 9.675807882987265400604202961)
+ 77.08161730368428609781633646)
+ 368.5196154710010637133875746)
+ 1143.262070703886173606073338)
+ 2320.439590251635247384768711)
+ 2898.0293292167655611275846)
+ 1826.3348842295112592168999
let Q = x*(x*(x*(x*(x*(x*(x*(1.0 + 17.14980943627607849376131193)
+ 137.1255960500622202878443578)
+ 661.7361207107653469211984771)
+ 2094.384367789539593790281779)
+ 4429.612803883682726711528526)
+ 6089.5424232724435504633068)
+ 4958.82756472114071495438422)
+ 1826.3348842295112595576438
exp (-(square x))*P/Q
and erf x =
let z = abs x
let S = x |> sign |> float
if z >= 10.0 then S
else
if z<0.5 then
let Xsq = square x
let P =Xsq*(Xsq*(Xsq*(Xsq*(Xsq*(Xsq*0.007547728033418631287834
+ 0.288805137207594084924010)
+ 14.3383842191748205576712)
+ 38.0140318123903008244444)
+ 3017.82788536507577809226)
+ 7404.07142710151470082064)
+ 80437.3630960840172832162
let Q = Xsq*(Xsq*(Xsq*(Xsq*(Xsq + 38.0190713951939403753468)
+ 658.070155459240506326937)
+ 6379.60017324428279487120)
+ 34216.5257924628539769006)
+ 80437.3630960840172826266
S*1.1283791670955125738961589031*z*P/Q
else
S*(1.0-erfc z)
let pnormStd t =
let sqrt2 = 1.41421356237309504880
half (erf (t / sqrt2)+1.0)
let normalize m s x = (x - m) / s in
//cumulative normal distribution N(m,s)
let pnorm x m s = x |> normalize m s |> pnormStd
//builds mediate distribution table for sum S(i-1) + a(i)
let combine L i =
let stat = L
|> List.fold (fun acc an ->
let b = h.a (float i) + an in
match b with
| b when b + h.rest (Integer i) < x -> acc //never reach x -> ignore
| b when b < x -> b::fst acc, snd acc //lt x -> append to table
| _ -> fst acc, 1.0/float(pown 2.0 i) + snd acc) //gt x -> add to prob estim
(L,0.0)
//exact table, crude prob estimation
fst stat, snd stat
//build comlete distribution table for sum S(apr)
let stat = [1..apr]
|> List.fold
(fun acc i -> let c = combine (fst acc) i
(fst c), snd c + snd acc
) ([0.0],0.0)
//compute sum of exact and normal distributions
fst stat
|> List.sumBy (fun v -> (1. - pnorm x (m+v) s)) //refine
|> (*) (inverse k)
|> (+) (snd stat)
//comulative distribution for Sum(1,inf, d(i)/i^pow),
//where P(d(i)=0) = P(d(i)=1) = 0.5
//tol - converge criteria 10^(-tol)
let distrib pow tol x =
let rec loop cur prev n =
if abs (prev-cur)>pown 0.1 tol then loop (distribApprox pow n x) cur (n+1)
else cur
1. - loop 0.0 1.0 1
//write to a file
let write L =
System.IO.File.WriteAllLines(@"c:\temp\a.csv" ,L)
printfn "OK"
//write out cumulative distribution points to a file
[|0.0..0.001..1.7|] |> Array.map (fun x -> sprintf "%f, %f" x (distrib 2 8 x)) |> write
|
val square : x:'a -> 'b (requires member ( * ))
Full name: Script.square
val x : 'a (requires member ( * ))
Multiple items
val double : x:'a -> 'b (requires member ( + ))
Full name: Script.double
--------------------
type double = System.Double
Full name: Microsoft.FSharp.Core.double
val x : 'a (requires member ( + ))
val half : x:float -> float
Full name: Script.half
val x : float
val inverse : x:float -> float
Full name: Script.inverse
val sign : x:float -> float
Full name: Script.sign
val abs : value:'T -> 'T (requires member Abs)
Full name: Microsoft.FSharp.Core.Operators.abs
type binom =
static member comb : n:int -> m:int -> int
static member fact : n:int -> int
Full name: Script.binom
static member binom.fact : n:int -> int
Full name: Script.binom.fact
val n : int
val loop : (int -> int -> int)
val acc : int
static member binom.comb : n:int -> m:int -> int
Full name: Script.binom.comb
val m : int
static member binom.fact : n:int -> int
val bernoulli : _arg1:int -> float
Full name: Script.bernoulli
Multiple items
module List
from Microsoft.FSharp.Collections
--------------------
type List<'T> =
| ( [] )
| ( :: ) of Head: 'T * Tail: 'T list
interface IEnumerable
interface IEnumerable<'T>
member GetSlice : startIndex:int option * endIndex:int option -> 'T list
member Head : 'T
member IsEmpty : bool
member Item : index:int -> 'T with get
member Length : int
member Tail : 'T list
static member Cons : head:'T * tail:'T list -> 'T list
static member Empty : 'T list
Full name: Microsoft.FSharp.Collections.List<_>
val map : mapping:('T -> 'U) -> list:'T list -> 'U list
Full name: Microsoft.FSharp.Collections.List.map
val k : int
static member binom.comb : n:int -> m:int -> int
Multiple items
val float : value:'T -> float (requires member op_Explicit)
Full name: Microsoft.FSharp.Core.Operators.float
--------------------
type float = System.Double
Full name: Microsoft.FSharp.Core.float
--------------------
type float<'Measure> = float
Full name: Microsoft.FSharp.Core.float<_>
val sumBy : projection:('T -> 'U) -> list:'T list -> 'U (requires member ( + ) and member get_Zero)
Full name: Microsoft.FSharp.Collections.List.sumBy
val x : float * float
val fst : tuple:('T1 * 'T2) -> 'T1
Full name: Microsoft.FSharp.Core.Operators.fst
val snd : tuple:('T1 * 'T2) -> 'T2
Full name: Microsoft.FSharp.Core.Operators.snd
type UpperLimit =
| Infinity
| Integer of int
Full name: Script.UpperLimit
union case UpperLimit.Infinity: UpperLimit
union case UpperLimit.Integer: int -> UpperLimit
Multiple items
val int : value:'T -> int (requires member op_Explicit)
Full name: Microsoft.FSharp.Core.Operators.int
--------------------
type int = int32
Full name: Microsoft.FSharp.Core.int
--------------------
type int<'Measure> = int
Full name: Microsoft.FSharp.Core.int<_>
Multiple items
type HypHarmonic =
new : pow:int -> HypHarmonic
member a : i:float -> float
member pow : int
member sum : (UpperLimit -> float)
member rest : n:UpperLimit -> float
static member pi2 : float
static member ( * ) : a:HypHarmonic * b:HypHarmonic -> HypHarmonic
static member sign : n:int -> int
Full name: Script.HypHarmonic
--------------------
new : pow:int -> HypHarmonic
val pow : int
val repl : (float -> float)
val loop : (('a -> 'a) -> int -> 'a -> 'a)
val f : ('a -> 'a)
val h : HypHarmonic
member HypHarmonic.pow : int
Full name: Script.HypHarmonic.pow
member HypHarmonic.a : i:float -> float
Full name: Script.HypHarmonic.a
val i : float
val a : HypHarmonic
val b : HypHarmonic
property HypHarmonic.pow: int
static member HypHarmonic.pi2 : float
Full name: Script.HypHarmonic.pi2
namespace System
type Math =
static val PI : float
static val E : float
static member Abs : value:sbyte -> sbyte + 6 overloads
static member Acos : d:float -> float
static member Asin : d:float -> float
static member Atan : d:float -> float
static member Atan2 : y:float * x:float -> float
static member BigMul : a:int * b:int -> int64
static member Ceiling : d:decimal -> decimal + 1 overload
static member Cos : d:float -> float
...
Full name: System.Math
field System.Math.PI = 3.14159265359
static member HypHarmonic.sign : n:int -> int
Full name: Script.HypHarmonic.sign
member HypHarmonic.sum : (UpperLimit -> float)
Full name: Script.HypHarmonic.sum
val s : float
static member HypHarmonic.sign : n:int -> int
val p : float
val pown : x:'T -> n:int -> 'T (requires member get_One and member ( * ) and member ( / ))
Full name: Microsoft.FSharp.Core.Operators.pown
property HypHarmonic.pi2: float
val f : float
val i : int
member HypHarmonic.a : i:float -> float
member HypHarmonic.rest : n:UpperLimit -> float
Full name: Script.HypHarmonic.rest
val n : UpperLimit
property HypHarmonic.sum: UpperLimit -> float
val distribApprox : pow:int -> apr:int -> x:float -> float
Full name: Script.distribApprox
val apr : int
val k : float
val M : (HypHarmonic -> float)
member HypHarmonic.rest : n:UpperLimit -> float
val m : float
val sqrt : value:'T -> 'U (requires member Sqrt)
Full name: Microsoft.FSharp.Core.Operators.sqrt
val erfc : (float -> float)
val erf : (float -> float)
val P : float
val Q : float
val exp : value:'T -> 'T (requires member Exp)
Full name: Microsoft.FSharp.Core.Operators.exp
val z : float
val S : float
val Xsq : float
val pnormStd : (float -> float)
val t : float
val sqrt2 : float
val normalize : (float -> float -> float -> float)
val pnorm : (float -> float -> float -> float)
val combine : (float list -> int -> float list * float)
val L : float list
val stat : float list * float
val fold : folder:('State -> 'T -> 'State) -> state:'State -> list:'T list -> 'State
Full name: Microsoft.FSharp.Collections.List.fold
val acc : float list * float
val an : float
val b : float
val c : float list * float
val v : float
val distrib : pow:int -> tol:int -> x:float -> float
Full name: Script.distrib
val tol : int
val loop : (float -> float -> int -> float)
val cur : float
val prev : float
val write : L:string [] -> unit
Full name: Script.write
val L : string []
namespace System.IO
type File =
static member AppendAllLines : path:string * contents:IEnumerable<string> -> unit + 1 overload
static member AppendAllText : path:string * contents:string -> unit + 1 overload
static member AppendText : path:string -> StreamWriter
static member Copy : sourceFileName:string * destFileName:string -> unit + 1 overload
static member Create : path:string -> FileStream + 3 overloads
static member CreateText : path:string -> StreamWriter
static member Decrypt : path:string -> unit
static member Delete : path:string -> unit
static member Encrypt : path:string -> unit
static member Exists : path:string -> bool
...
Full name: System.IO.File
System.IO.File.WriteAllLines(path: string, contents: System.Collections.Generic.IEnumerable<string>) : unit
System.IO.File.WriteAllLines(path: string, contents: string []) : unit
System.IO.File.WriteAllLines(path: string, contents: System.Collections.Generic.IEnumerable<string>, encoding: System.Text.Encoding) : unit
System.IO.File.WriteAllLines(path: string, contents: string [], encoding: System.Text.Encoding) : unit
val printfn : format:Printf.TextWriterFormat<'T> -> 'T
Full name: Microsoft.FSharp.Core.ExtraTopLevelOperators.printfn
module Array
from Microsoft.FSharp.Collections
val map : mapping:('T -> 'U) -> array:'T [] -> 'U []
Full name: Microsoft.FSharp.Collections.Array.map
val sprintf : format:Printf.StringFormat<'T> -> 'T
Full name: Microsoft.FSharp.Core.ExtraTopLevelOperators.sprintf
More information