1 people like it.
Like the snippet!
Kernel Density estimation and visualization with MathNet.Numerics and FsPlotly
Sample to estimate and visualize kernel densities of multiple distributions for visual comparison.
Here the distributions of NY taxi fares are being compared by payment type (e.g. cash, credit card, etc.)
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
|
open FSharp.Data
open MathNet.Numerics
open FSharp.Plotly
(*
Sample based on NY Taxi data
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
*)
type Trip = CsvProvider< @"C:\s\AutoMLDemo\taxi-fare-test.csv" >
let trips = Trip.GetSample()
let trows = trips.Rows |> Seq.toArray
let fareByPaymentType =
trows
|> Array.groupBy(fun x->x.Payment_type)
|> Array.map (fun (p,xs)->p, xs |> Array.map (fun x->float x.Fare_amount))
let histograms() =
fareByPaymentType
|> Array.map (fun (v,fs)->
Chart.Histogram fs
|> Chart.withTitle v
|> Chart.Show
)
open MathNet.Numerics.Statistics
let densityByPaymentType() =
let dsByV =
fareByPaymentType
|> Array.map(fun (v,fares) ->
let frs = fares //|> Seq.sample (0.5) |> Seq.toArray
let sfrs = Array.sort frs
let xs = [|for i in 0.0 .. 0.1 .. 100.0 -> i|]
let ds = xs |> Array.map (fun x -> KernelDensity.EstimateGaussian(x,1.0,sfrs))
v,xs,ds)
let area xs = Chart.Area(xs, Opacity=0.1)
let colors = [|"blue"; "red"|]
dsByV
|> Array.mapi (fun i (v,xs,ds) ->
Array.zip xs ds
|> area
|> Chart.withTraceName v)
|> Chart.Combine
|> Chart.withTitle "Fare Density by Payment Type"
|> Chart.Show
|
Multiple items
namespace FSharp
--------------------
namespace Microsoft.FSharp
Multiple items
namespace FSharp.Data
--------------------
namespace Microsoft.FSharp.Data
namespace MathNet
namespace MathNet.Numerics
namespace FSharp.Plotly
type Trip = obj
Full name: Script.Trip
type CsvProvider
Full name: FSharp.Data.CsvProvider
<summary>Typed representation of a CSV file.</summary>
<param name='Sample'>Location of a CSV sample file or a string containing a sample CSV document.</param>
<param name='Separators'>Column delimiter(s). Defaults to `,`.</param>
<param name='InferRows'>Number of rows to use for inference. Defaults to `1000`. If this is zero, all rows are used.</param>
<param name='Schema'>Optional column types, in a comma separated list. Valid types are `int`, `int64`, `bool`, `float`, `decimal`, `date`, `guid`, `string`, `int?`, `int64?`, `bool?`, `float?`, `decimal?`, `date?`, `guid?`, `int option`, `int64 option`, `bool option`, `float option`, `decimal option`, `date option`, `guid option` and `string option`.
You can also specify a unit and the name of the column like this: `Name (type<unit>)`, or you can override only the name. If you don't want to specify all the columns, you can reference the columns by name like this: `ColumnName=type`.</param>
<param name='HasHeaders'>Whether the sample contains the names of the columns as its first line.</param>
<param name='IgnoreErrors'>Whether to ignore rows that have the wrong number of columns or which can't be parsed using the inferred or specified schema. Otherwise an exception is thrown when these rows are encountered.</param>
<param name='SkipRows'>SKips the first n rows of the CSV file.</param>
<param name='AssumeMissingValues'>When set to true, the type provider will assume all columns can have missing values, even if in the provided sample all values are present. Defaults to false.</param>
<param name='PreferOptionals'>When set to true, inference will prefer to use the option type instead of nullable types, `double.NaN` or `""` for missing values. Defaults to false.</param>
<param name='Quote'>The quotation mark (for surrounding values containing the delimiter). Defaults to `"`.</param>
<param name='MissingValues'>The set of strings recogized as missing values. Defaults to `NaN,NA,N/A,#N/A,:,-,TBA,TBD`.</param>
<param name='CacheRows'>Whether the rows should be caches so they can be iterated multiple times. Defaults to true. Disable for large datasets.</param>
<param name='Culture'>The culture used for parsing numbers and dates. Defaults to the invariant culture.</param>
<param name='Encoding'>The encoding used to read the sample. You can specify either the character set name or the codepage number. Defaults to UTF8 for files, and to ISO-8859-1 the for HTTP requests, unless `charset` is specified in the `Content-Type` response header.</param>
<param name='ResolutionFolder'>A directory that is used when resolving relative file references (at design time and in hosted execution).</param>
<param name='EmbeddedResource'>When specified, the type provider first attempts to load the sample from the specified resource
(e.g. 'MyCompany.MyAssembly, resource_name.csv'). This is useful when exposing types generated by the type provider.</param>
val trips : obj
Full name: Script.trips
val trows : obj []
Full name: Script.trows
Multiple items
module Seq
from FSharp.Plotly
--------------------
module Seq
from Microsoft.FSharp.Collections
val toArray : source:seq<'T> -> 'T []
Full name: Microsoft.FSharp.Collections.Seq.toArray
val fareByPaymentType : (string * float []) []
Full name: Script.fareByPaymentType
module Array
from Microsoft.FSharp.Collections
val groupBy : projection:('T -> 'Key) -> array:'T [] -> ('Key * 'T []) [] (requires equality)
Full name: Microsoft.FSharp.Collections.Array.groupBy
val x : obj
val map : mapping:('T -> 'U) -> array:'T [] -> 'U []
Full name: Microsoft.FSharp.Collections.Array.map
val p : string
val xs : obj []
Multiple items
val float : value:'T -> float (requires member op_Explicit)
Full name: Microsoft.FSharp.Core.Operators.float
--------------------
type float = System.Double
Full name: Microsoft.FSharp.Core.float
--------------------
type float<'Measure> = float
Full name: Microsoft.FSharp.Core.float<_>
val histograms : unit -> unit []
Full name: Script.histograms
val v : string
val fs : float []
type Chart =
static member Area : xy:seq<#IConvertible * #IConvertible> * ?Name:string * ?ShowMarkers:bool * ?Showlegend:bool * ?MarkerSymbol:Symbol * ?Color:'a2 * ?Opacity:float * ?Labels:seq<#IConvertible> * ?TextPosition:TextPosition * ?TextFont:Font * ?Dash:DrawingStyle * ?Width:'a4 -> GenericChart
static member Area : x:seq<#IConvertible> * y:seq<#IConvertible> * ?Name:string * ?ShowMarkers:bool * ?Showlegend:bool * ?MarkerSymbol:Symbol * ?Color:'a2 * ?Opacity:float * ?Labels:seq<#IConvertible> * ?TextPosition:TextPosition * ?TextFont:Font * ?Dash:DrawingStyle * ?Width:'a4 -> GenericChart
static member Bar : keysvalues:seq<#IConvertible * #IConvertible> * ?Name:string * ?Showlegend:bool * ?Color:'a2 * ?Opacity:float * ?Labels:seq<#IConvertible> * ?TextPosition:TextPosition * ?TextFont:Font * ?Marker:Marker -> GenericChart
static member Bar : keys:seq<#IConvertible> * values:seq<#IConvertible> * ?Name:string * ?Showlegend:bool * ?Color:'a2 * ?Opacity:float * ?Labels:seq<#IConvertible> * ?TextPosition:TextPosition * ?TextFont:Font * ?Marker:Marker -> GenericChart
static member BoxPlot : xy:seq<'a0 * 'a1> * ?Name:string * ?Showlegend:bool * ?Color:'a2 * ?Fillcolor:'a3 * ?Opacity:float * ?Whiskerwidth:'a4 * ?Boxpoints:Boxpoints * ?Boxmean:BoxMean * ?Jitter:'a5 * ?Pointpos:'a6 * ?Orientation:Orientation -> GenericChart
static member BoxPlot : ?x:'a0 * ?y:'a1 * ?Name:string * ?Showlegend:bool * ?Color:'a2 * ?Fillcolor:'a3 * ?Opacity:float * ?Whiskerwidth:'a4 * ?Boxpoints:Boxpoints * ?Boxmean:BoxMean * ?Jitter:'a5 * ?Pointpos:'a6 * ?Orientation:Orientation -> GenericChart
static member Bubble : xysizes:seq<#IConvertible * #IConvertible * #IConvertible> * ?Name:string * ?Showlegend:bool * ?MarkerSymbol:Symbol * ?Color:'a3 * ?Opacity:float * ?Labels:seq<#IConvertible> * ?TextPosition:TextPosition * ?TextFont:Font -> GenericChart
static member Bubble : x:seq<#IConvertible> * y:seq<#IConvertible> * sizes:seq<#IConvertible> * ?Name:string * ?Showlegend:bool * ?MarkerSymbol:Symbol * ?Color:'a3 * ?Opacity:float * ?Labels:seq<#IConvertible> * ?TextPosition:TextPosition * ?TextFont:Font -> GenericChart
static member ChoroplethMap : locations:seq<string> * z:seq<#IConvertible> * ?Text:seq<#IConvertible> * ?Locationmode:LocationFormat * ?Autocolorscale:bool * ?Colorscale:Colorscale * ?Colorbar:'a2 * ?Marker:Marker * ?Zmin:'a3 * ?Zmax:'a4 -> GenericChart
static member Column : keysvalues:seq<#IConvertible * #IConvertible> * ?Name:string * ?Showlegend:bool * ?Color:'a2 * ?Opacity:float * ?Labels:seq<#IConvertible> * ?TextPosition:TextPosition * ?TextFont:Font * ?Marker:Marker -> GenericChart
...
Full name: FSharp.Plotly.Chart
static member Chart.Histogram : data:seq<#System.IConvertible> * ?Orientation:StyleParam.Orientation * ?Name:string * ?Showlegend:bool * ?Opacity:float * ?Color:'a1 * ?HistNorm:StyleParam.HistNorm * ?HistFunc:StyleParam.HistNorm * ?nBinsx:int * ?nBinsy:int * ?Xbins:Bins * ?Ybins:Bins * ?xError:'a2 * ?yError:'a3 -> GenericChart.GenericChart
static member Chart.withTitle : title:string * ?Titlefont:Font -> (GenericChart.GenericChart -> GenericChart.GenericChart)
static member Chart.Show : ch:GenericChart.GenericChart -> unit
namespace MathNet.Numerics.Statistics
val densityByPaymentType : unit -> unit
Full name: Script.densityByPaymentType
val dsByV : (string * float [] * float []) []
val fares : float []
val frs : float []
val sfrs : float []
val sort : array:'T [] -> 'T [] (requires comparison)
Full name: Microsoft.FSharp.Collections.Array.sort
val xs : float []
val i : float
val ds : float []
val x : float
type KernelDensity =
static member EpanechnikovKernel : x:float -> float
static member Estimate : x:float * bandwidth:float * samples:IList<float> * kernel:Func<float, float> -> float
static member EstimateEpanechnikov : x:float * bandwidth:float * samples:IList<float> -> float
static member EstimateGaussian : x:float * bandwidth:float * samples:IList<float> -> float
static member EstimateTriangular : x:float * bandwidth:float * samples:IList<float> -> float
static member EstimateUniform : x:float * bandwidth:float * samples:IList<float> -> float
static member GaussianKernel : x:float -> float
static member TriangularKernel : x:float -> float
static member UniformKernel : x:float -> float
Full name: MathNet.Numerics.Statistics.KernelDensity
KernelDensity.EstimateGaussian(x: float, bandwidth: float, samples: System.Collections.Generic.IList<float>) : float
val area : (seq<#System.IConvertible * #System.IConvertible> -> GenericChart.GenericChart)
val xs : seq<#System.IConvertible * #System.IConvertible>
static member Chart.Area : xy:seq<#System.IConvertible * #System.IConvertible> * ?Name:string * ?ShowMarkers:bool * ?Showlegend:bool * ?MarkerSymbol:StyleParam.Symbol * ?Color:'a2 * ?Opacity:float * ?Labels:seq<#System.IConvertible> * ?TextPosition:StyleParam.TextPosition * ?TextFont:Font * ?Dash:StyleParam.DrawingStyle * ?Width:'a4 -> GenericChart.GenericChart
static member Chart.Area : x:seq<#System.IConvertible> * y:seq<#System.IConvertible> * ?Name:string * ?ShowMarkers:bool * ?Showlegend:bool * ?MarkerSymbol:StyleParam.Symbol * ?Color:'a2 * ?Opacity:float * ?Labels:seq<#System.IConvertible> * ?TextPosition:StyleParam.TextPosition * ?TextFont:Font * ?Dash:StyleParam.DrawingStyle * ?Width:'a4 -> GenericChart.GenericChart
val colors : string []
val mapi : mapping:(int -> 'T -> 'U) -> array:'T [] -> 'U []
Full name: Microsoft.FSharp.Collections.Array.mapi
val i : int
val zip : array1:'T1 [] -> array2:'T2 [] -> ('T1 * 'T2) []
Full name: Microsoft.FSharp.Collections.Array.zip
static member Chart.withTraceName : ?Name:string * ?Showlegend:bool * ?Legendgroup:string * ?Visible:StyleParam.Visible -> (GenericChart.GenericChart -> GenericChart.GenericChart)
static member Chart.Combine : gCharts:seq<GenericChart.GenericChart> -> GenericChart.GenericChart
More information