5 people like it.
Like the snippet!
Weighted Quick-Union with Path Compression
Implementation of Mutable Weighted Quick-Union with Path Compression in F#
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
|
// From Wikipedia: http://en.wikipedia.org/wiki/Disjoint-set_data_structure
// In computing, a disjoint-set data structure is a data structure that keeps track
// of a set of elements partitioned into a number of disjoint (nonoverlapping)
// subsets. A union-find algorithm is an algorithm that performs two useful
// operations on such a data structure:
// Find: Determine which set a particular element is in. Also useful for
// determining if two elements are in the same set.
// Union: Combine or merge two sets into a single set.
// Implementation from: http://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf
/// Quick-find... Union is O(N), Flat Trees
/// Quick-union... Trees are tall, Find is O(N), Find requires union
/// Overall: O(MN) -- M union-find ops on a set of N objects
type QuickUnion (N) =
//Parent index, id[i] is parent of i
let mutable id : int[] = Array.init N (fun i -> i)
let root i =
let mutable q = i
while (q <> id.[q]) do q <- id.[q]
q
member t.find(p, q) =
root(p) = root(q)
member t.unite(p, q) =
let i = root(p)
let j = root(q)
id.[i] = j;
/// Weighted QuickUnion
/// Now with logN union, lgN find
/// Overall: O(N+MLogN) -- M union-find ops on a set of N objects
type WeightedQuickUnion (N) =
//Parent index, id[i] is parent of i
let id : int[] = Array.init N (fun i -> i)
//Number of elements rooted at i
let sz : int[] = Array.create N 0
let root i =
let mutable q = i
while (q <> id.[q]) do q <- id.[q]
q
member t.find(p, q) =
root(p) = root(q)
member t.unite(p, q) =
let i = root(p)
let j = root(q)
if sz.[i] < sz.[j] then id.[i] <- j; sz.[j] <- sz.[j] + sz.[i]
else id.[j] <- i; sz.[i] <- sz.[i] + sz.[j]
/// Weighted quick-union with path compression
/// Overall O((M+N)lg*N) -- M union-find ops on a set of N objects
type QuickUWPC (N) =
//Parent index, id[i] is parent of i
let id : int[] = Array.init N (fun i -> i)
//Number of elements rooted at i
let sz : int[] = Array.create N 0
let root i =
let mutable q = i
while (q <> id.[q]) do
id.[q] <- id.[id.[q]]
q <- id.[q]
q
member t.find(p, q) =
root(p) = root(q)
member t.unite(p, q) =
let i = root(p)
let j = root(q)
if sz.[i] < sz.[j] then id.[i] <- j; sz.[j] <- sz.[j] + sz.[i]
else id.[j] <- i; sz.[i] <- sz.[i] + sz.[j]
|
Multiple items
type QuickUnion =
new : N:int -> QuickUnion
member find : p:int * q:int -> bool
member unite : p:int * q:int -> bool
Full name: Script.QuickUnion
Quick-find... Union is O(N), Flat Trees
Quick-union... Trees are tall, Find is O(N), Find requires union
Overall: O(MN) -- M union-find ops on a set of N objects
--------------------
new : N:int -> QuickUnion
val N : int
val mutable id : int []
Multiple items
val int : value:'T -> int (requires member op_Explicit)
Full name: Microsoft.FSharp.Core.Operators.int
--------------------
type int = int32
Full name: Microsoft.FSharp.Core.int
--------------------
type int<'Measure> = int
Full name: Microsoft.FSharp.Core.int<_>
module Array
from Microsoft.FSharp.Collections
val init : count:int -> initializer:(int -> 'T) -> 'T []
Full name: Microsoft.FSharp.Collections.Array.init
val i : int
val root : (int -> int)
val mutable q : int
val t : QuickUnion
member QuickUnion.find : p:int * q:int -> bool
Full name: Script.QuickUnion.find
val p : int
val q : int
member QuickUnion.unite : p:int * q:int -> bool
Full name: Script.QuickUnion.unite
val j : int
Multiple items
type WeightedQuickUnion =
new : N:int -> WeightedQuickUnion
member find : p:int * q:int -> bool
member unite : p:int * q:int -> unit
Full name: Script.WeightedQuickUnion
Weighted QuickUnion
Now with logN union, lgN find
Overall: O(N+MLogN) -- M union-find ops on a set of N objects
--------------------
new : N:int -> WeightedQuickUnion
val id : int []
val sz : int []
val create : count:int -> value:'T -> 'T []
Full name: Microsoft.FSharp.Collections.Array.create
val t : WeightedQuickUnion
member WeightedQuickUnion.find : p:int * q:int -> bool
Full name: Script.WeightedQuickUnion.find
member WeightedQuickUnion.unite : p:int * q:int -> unit
Full name: Script.WeightedQuickUnion.unite
Multiple items
type QuickUWPC =
new : N:int -> QuickUWPC
member find : p:int * q:int -> bool
member unite : p:int * q:int -> unit
Full name: Script.QuickUWPC
Weighted quick-union with path compression
Overall O((M+N)lg*N) -- M union-find ops on a set of N objects
--------------------
new : N:int -> QuickUWPC
val t : QuickUWPC
member QuickUWPC.find : p:int * q:int -> bool
Full name: Script.QuickUWPC.find
member QuickUWPC.unite : p:int * q:int -> unit
Full name: Script.QuickUWPC.unite
More information