4 people like it.
Like the snippet!
Project Euler #1
This snippet is code that solves first Project Euler problem. It finds the sum of all the multiples of 3 or 5 below 1000. Please add other (more efficient, succinct or interesting) solutions to this snippet.
1:
2:
3:
4:
5:
6:
|
let range = [0..999]
let condition x = x % 3 = 0 || x % 5 = 0
range
|> List.filter condition
|> List.fold (+) 0
|
1:
2:
3:
|
[0..999]
|> Seq.filter (fun x -> x % 3 = 0 || x % 5 = 0)
|> Seq.reduce (+)
|
1:
2:
3:
|
seq { for x in 0 .. 999 do
if x % 3 = 0 || x % 5 = 0 then yield x }
|> Seq.sum
|
1:
2:
3:
4:
5:
6:
|
let rec multiple x =
if x = 1000 then 0
elif x%3 = 0 || x%5 = 0 then x + multiple (x+1)
else multiple (x+1)
multiple 1
|
1:
2:
3:
4:
5:
6:
7:
8:
9:
|
let rec mul' acc x =
match x with
| 999L -> acc + x
| x when (x%3L=0L||x%5L=0L) ->
mul' (acc + x) (x + 1L)
| _ ->
mul' acc (x + 1L)
mul' 0L 1L
|
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
|
let mSum (multipliers:int list) limit =
//if 1 + 2 + .. + n = n*(n+1)/2
let aSum n = n*(n+1I) >>> 1
//then k + 2k + .. + k*n = k*(aSum n), where n = limit/k
let lSum limit k = limit/k |> aSum |> (*) k
//make all combinations of multipliers
//thanks to Alexander Rautenberg
let allCombinations lst =
let rec comb accLst elemLst =
match elemLst with
| h::t ->
let next = [h]::List.map (fun el -> h::el) accLst @ accLst
comb next t
| _ -> accLst
comb [] lst
//and do calculations using inclusion–exclusion principle
multipliers
|> allCombinations
|> List.map (fun l -> let k = List.reduce (*) l |> bigint in
if (List.length l) % 2 = 0 then
-(lSum limit k)
else
lSum limit k
)
|> List.sum
let ans = mSum [3; 5] 999I
|
val range : int list
Full name: Script.range
val condition : x:int -> bool
Full name: Script.condition
val x : int
Multiple items
module List
from Microsoft.FSharp.Collections
--------------------
type List<'T> =
| ( [] )
| ( :: ) of Head: 'T * Tail: 'T list
interface IEnumerable
interface IEnumerable<'T>
member GetSlice : startIndex:int option * endIndex:int option -> 'T list
member Head : 'T
member IsEmpty : bool
member Item : index:int -> 'T with get
member Length : int
member Tail : 'T list
static member Cons : head:'T * tail:'T list -> 'T list
static member Empty : 'T list
Full name: Microsoft.FSharp.Collections.List<_>
val filter : predicate:('T -> bool) -> list:'T list -> 'T list
Full name: Microsoft.FSharp.Collections.List.filter
val fold : folder:('State -> 'T -> 'State) -> state:'State -> list:'T list -> 'State
Full name: Microsoft.FSharp.Collections.List.fold
module Seq
from Microsoft.FSharp.Collections
val filter : predicate:('T -> bool) -> source:seq<'T> -> seq<'T>
Full name: Microsoft.FSharp.Collections.Seq.filter
val reduce : reduction:('T -> 'T -> 'T) -> source:seq<'T> -> 'T
Full name: Microsoft.FSharp.Collections.Seq.reduce
Multiple items
val seq : sequence:seq<'T> -> seq<'T>
Full name: Microsoft.FSharp.Core.Operators.seq
--------------------
type seq<'T> = System.Collections.Generic.IEnumerable<'T>
Full name: Microsoft.FSharp.Collections.seq<_>
val sum : source:seq<'T> -> 'T (requires member ( + ) and member get_Zero)
Full name: Microsoft.FSharp.Collections.Seq.sum
val multiple : x:int -> int
Full name: Script.multiple
val mul' : acc:int64 -> x:int64 -> int64
Full name: Script.mul'
val acc : int64
val x : int64
val mSum : multipliers:int list -> limit:System.Numerics.BigInteger -> System.Numerics.BigInteger
Full name: Script.mSum
val multipliers : int list
Multiple items
val int : value:'T -> int (requires member op_Explicit)
Full name: Microsoft.FSharp.Core.Operators.int
--------------------
type int = int32
Full name: Microsoft.FSharp.Core.int
--------------------
type int<'Measure> = int
Full name: Microsoft.FSharp.Core.int<_>
type 'T list = List<'T>
Full name: Microsoft.FSharp.Collections.list<_>
val limit : System.Numerics.BigInteger
val aSum : (System.Numerics.BigInteger -> System.Numerics.BigInteger)
val n : System.Numerics.BigInteger
val lSum : (System.Numerics.BigInteger -> System.Numerics.BigInteger -> System.Numerics.BigInteger)
val k : System.Numerics.BigInteger
val allCombinations : ('a list -> 'a list list)
val lst : 'a list
val comb : ('b list list -> 'b list -> 'b list list)
val accLst : 'b list list
val elemLst : 'b list
val h : 'b
val t : 'b list
val next : 'b list list
val map : mapping:('T -> 'U) -> list:'T list -> 'U list
Full name: Microsoft.FSharp.Collections.List.map
val el : 'b list
val l : int list
val reduce : reduction:('T -> 'T -> 'T) -> list:'T list -> 'T
Full name: Microsoft.FSharp.Collections.List.reduce
type bigint = System.Numerics.BigInteger
Full name: Microsoft.FSharp.Core.bigint
val length : list:'T list -> int
Full name: Microsoft.FSharp.Collections.List.length
val sum : list:'T list -> 'T (requires member ( + ) and member get_Zero)
Full name: Microsoft.FSharp.Collections.List.sum
val ans : System.Numerics.BigInteger
Full name: Script.ans
More information